
Lattice instability at phase transitions near the Lifshitz point in proper monoclinic ferroelectrics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 4047

(http://iopscience.iop.org/0953-8984/18/16/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 10:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 4047–4064 doi:10.1088/0953-8984/18/16/011

Lattice instability at phase transitions near the Lifshitz
point in proper monoclinic ferroelectrics

R M Yevych, Yu M Vysochanskii, M M Khoma and S I Perechinskii

Institute for Physics and Chemistry of Solid State, Uzhgorod National University,
88000 Uzhgorod, Ukraine

E-mail: vysochanskii@univ.uzhgorod.ua

Received 28 October 2005, in final form 27 February 2006
Published 7 April 2006
Online at stacks.iop.org/JPhysCM/18/4047

Abstract
The temperature dependence of acoustic properties of the Sn2P2(Sex S1−x)6

uniaxial ferroelectric in the vicinity of the Lifshitz point (LP) was
investigated by Brillouin spectroscopy and analysed in the Landau–Khalatnikov
approximation. An anomalous decrease of the longitudinal hypersound velocity
in the paraelectric phase caused by fluctuation effects and crystal structure
defects has been found near the LP. Besides this, a small softening of the
transverse acoustic phonons is observed, which is due to their linear interaction
with the soft optic mode found for incommensurate phase transitions in proper
ferroelectrics. The lattice instability analysis of Sn2P2S6 and Sn2P2Se6 crystals
and their solid solutions in a polarizable ion model shows that a possible reason
for the absence of a soft acoustic mode is nonorthogonality of the spontaneous
polarization vector and modulation wavevector which both lie in the monoclinic
symmetry plane.

1. Introduction

The uniaxial proper ferroelectric solid solution Sn2P2(Sex S1−x)6 is special in that one may
reach the vicinity of the Lifshitz point (LP) in the phase diagram, where paraelectric,
ferroelectric and incommensurate phases meet. Sn2P2S6 and Sn2P2Se6 are isostructural
monoclinic compounds with P21/c symmetry in the high-temperature phase and Pc symmetry
in the low-temperature phase [1, 2]. The phase sequence in Sn2P2Se6 is similar to that in the
well-known examples of thiourea [3] and NaNO2 [4]: a phase transition (PT) of the second
order from the paraelectric (PE) phase to the incommensurate (IC) phase at temperature Ti and
a PT of the first order (lock-in transition) from the IC phase to the ferroelectric (FE) phase at
temperature Tc, with a modulation wavevector in the IC phase near the Brillouin zone (BZ)
centre [5]. In Sn2P2S6 a direct second order PT from the PE phase to the FE phase is found at
T0. Because of the absence of the intermediate IC phase in the sulfur compound and its presence
in the selenium compound, one expects a triple point in the temperature–concentration phase
diagram for the Sn2P2(Sex S1−x)6 solid solution. Such a point, in which the T0(x) transition
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line splits smoothly into Ti(x) and Tc(x) lines, was indeed observed, and identified as an LP,
as was introduced for magnetic compounds earlier [7].

X-ray diffraction investigations [8] have shown that in Sn2P2Se6 below Ti an IC phase
appears with a modulation period of about 14 unit cells. Neutron scattering investigations [9]
have confirmed that in the IC phase of the Sn2P2Se6 crystal the modulus of the modulation
wavevector is equal to qi ≈ 0.09qmax and decreases to qi ≈ 0.075qmax under cooling to Tc.
Here qmax is the BZ boundary.

Sn2P2S6 and Sn2P2Se6 are uniaxial ferroelectrics; in the FE phase the spontaneous
polarization vector lies in the symmetry plane, and varies in amplitude as well as in orientation
as a function of temperature. The same happens for the wavevector modulation in the IC phase
of Sn2P2Se6. It also lies in the monoclinic plane of symmetry [8, 9]. The polarization wave in
the IC phase may have a longitudinal component. If we choose the elementary cell as in [2],
the [100] and [001] axes have approximately an angle of 91.16◦ between them, the spontaneous
polarization vector in the symmetry plane makes an angle of approximately 15◦ with the [100]
axis [10], and the modulation vector in the IC phase of Sn2P2Se6 has an angle of approximately
9◦ with the [001] axis [8]. Thus, the modulation wave of Sn2P2Se6 in its IC phase is close to
a transverse wave, but it has a longitudinal component as well, which varies under temperature
or chemical composition changes in the solid solutions.

In [11] a new universality class for the critical behaviour of the uniaxial ferroelectrics in
the vicinity of the LP was found. The experimental data for Sn2P2S6 concerning the anomalous
behaviour of the dielectric susceptibility [12], ultrasound velocities [13], birefringence [14],
and diffuse scattering of x-rays [15] are generally well described by [11] for the dipole Lifshitz
point which is close to the tricritical point (TCP): the merging of these points preconditions a
new universality class, the dipole tricritical Lifshitz point. However, the renormalization group
description [11] is based on the uniaxial ferroelectric model of orthorhombic symmetry, when
the modulation wave in its IC phase is exactly transverse. Therefore, the fluctuation spectrum
of the order parameter is very interesting in the vicinity of LP for the uniaxial ferroelectrics
with the polarization and modulation wavevector in the monoclinic symmetry plane.

The phenomenological description [16] assigns a major role to the Lifshitz type invariant
for the appearance of the IC phase in proper ferroelectrics. In the thermodynamical potential
this term represents a linear interaction of the soft optic and acoustic phonons, which is
proportional to the distance from the BZ centre. The analysis of the phonon spectra of the
Sn2P2Se6 crystal obtained by inelastic neutron scattering [9] confirms this mechanism of the
IC phase appearance in this crystal. In this situation one expects a decrease to zero of the
transverse acoustic phonon velocity when approaching the LP in proper ferroelectrics, which is
similar to the soft acoustic mode in the case of proper ferroelastics. According to data obtained
from ultrasonic measurements [17] for Sn2P2S6 there is only a partial softening of the transverse
acoustic mode propagating along the [100] crystallographic direction and polarized along the
[001] direction.

As it was noted, for monoclinic symmetry and with the spontaneous polarization vector
and the modulation wavevector of the IC phase lying in the symmetry plane, the dipole–
dipole interaction of the mixed soft optic and acoustic phonons might play a special role in
the transition through the LP. The study of this is the purpose of the present paper. Its outline
is as follows.

First we report on the investigation of hypersound velocity and attenuation temperature
dependence of Sn2P2(SexS1−x)6 crystals with x = 0, 0.15 and 0.28 performed by Brillouin
spectroscopy. Then the data are analysed in the Landau–Khalatnikov (LK) model and
interpreted by combining this with lattice dynamics calculations within the polarizable ion
model of these crystals.
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2. Elastic properties from Brillouin spectroscopy

2.1. Method

The Brillouin scattering spectra were studied using a He–Ne laser, and a pressure-scanned
three-pass Fabry–Perot interferometer with an accuracy of 35 and free spectral range of
2.52 cm−1. The right-angle scattering mode was used. The crystalline samples were placed
in a UTREX cryostat in which the temperature was stabilized with an accuracy of 0.25 K. The
spectra lines were fitted by Lorentzians.

The hypersound velocities V and attenuation α were calculated using the well-known
formulae:

�0 = V

c
ω0

√
(n0 − nS)2 + 4n0nS sin2 θ

2
;

α = δω

2V
;

where �0 is a Brillouin component shift, ω0 is the frequency of the He–Ne laser, θ is the
scattering angle, and n0, nS are indices of refraction for the stimulated and scattered light. The
accuracy was about 3% for hypersound velocities and about 10% for attenuation determination.

Elastic moduli and velocity indicatrices were calculated on the basis of the experimental
hypersound velocities by using the Christoffel relation(∑

jk

ci jkl n j nk − ρv2δil

)
pl = 0

where ci jkl are the elastic constants, ni are the unit wavevector components, ρ is the density, v

is the velocity and pi are the unit polarization vector components.
In the calculations of the hypersound velocities the known refractive indices for the

Sn2P2S6 [18] were used, and it was assumed, for simplicity, that n0 = nS = 3.0. For
Sn2P2(Se0.28S0.72)6 the main refractive indices were determined by the prism method: n0 =
nS = 3.25; and for Sn2P2(Se0.15S0.85)6 by taking a linear approximation for the dependence of
the refractive index on the concentration (we found n0 = nS = 3.13). In the calculations of the
elastic modulus the experimental values of crystal density were used, which agree well with the
theoretically determined values: ρSn2P2S6 ≈ 3540 kg m−3, ρSn2P2(Se0.28S0.72)6 ≈ 4020 kg m−3.

The Brillouin scattering spectra determination was carried out on three different samples
for each of the crystals under study. The frequency shifts and corresponding hypersound
velocities for every one of the three acoustic phonons propagating in seven directions were
determined from the spectra.

2.2. Experimental data

The part of experimental data mentioned below was reported previously without essential
analysis [19]. Here we will try to remedy this situation. In figure 1, Brillouin scattering spectra
of the Sn2P2S6 and Sn2P2(Se0.28S0.72)6 crystals at room temperature are shown. The velocities
obtained for Sn2P2S6 are presented in table 1. The given quantities agree well with the data
obtained by ultrasonic methods [13, 17] and with the data from inelastic neutron scattering
experiments [20].

We have calculated the values of the ci j elastic tensor components using the reciprocal
Christoffel equations. These ci j values are presented in table 1.

The hypersound velocities and elastic moduli for Sn2P2(Se0.28S0.72)6, in which the LP is
found, are presented in table 2. Since the LP in Sn2P2(Se0.28S0.72)6 occurs at a temperature
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Figure 1. Brillouin spectra at T = 293 K. (1) For Sn2P2S6 in the
scattering geometry Z(X X)Y . (2) For Sn2P2(Se0.28S0.72)6 in the
scattering geometry Z(X 0)Y .

Table 1. The magnitudes of sound velocities along different crystallographic directions (a) and
elastic moduli (b) in the Sn2P2S6 crystal at T = 293 K (elastic moduli obtained from the ultrasonic
experiments are given in parentheses).

(a)

vL , vT 1, vT 2

Direction (103 m s−1)

[100] 3.5, 2.5, 2.2
[010] 3.0, 2.4, 2.1
[001] 3.6, 2.4, 2.1
[110] 4.0, 2.3, 1.5
[011] 3.5, 2.5, 1.9
[101] 3.9, 2.4, 1.8
[101̄] 3.9, 2.4, 1.8

(b)

ci j (1010 N m−2)

4.2 2.0 1.8 0.0 −0.7 0.0
3.2(3.25) 1.0 0.0 −0.4 0.0

4.5(5.8) 0.0 0.5 0.0
1.6 0.0 0.1

2.2 0.0
2.2

TLP ≈ 286 K, the magnitudes of hypersound velocities and elastic moduli, which are shown in
table 2, correspond to elastic property anisotropy of the crystals under consideration in the PE
phase at a temperature about TLP + 7 K.

The Brillouin spectra as a function of temperature for phonons with �q ‖ [010] in Sn2P2S6

are shown in figure 2. The temperature dependence of the longitudinal hypersound velocity
and attenuation obtained from these spectra are shown in figures 3 and 4. As can be seen from
figure 4, there is a drastic change of the attenuation at the PT and a peak asymmetry towards
the FE phase. This points to a relaxation mechanism of the attenuation, as is described by the
LK model. At the same time the smearing of the anomaly in the hypersound velocity towards
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Figure 2. The Brillouin spectra temperature evolution for
hypersound waves with �q ‖ [010] in the Sn2P2S6 crystal.

Table 2. The magnitudes of hypersound velocities along different crystallographic directions (a)
and elastic moduli (b) in the Sn2P2(Se0.28S0.72)6 crystal at T = 293 K.

(a)

vL , vT 1, vT 2

Direction (103 m s−1)

[110] 3.6, 2.3, 1.6
[011] 3.4, 2.4, 1.8
[101] 3.6, —, 1.7
[101̄] 3.5, —, 1.7
[111] 3.5, 2.4, 1.7
[111̄] 3.5, 2.3, 1.9

(b)

ci j (1010 N m−2)

5.3 0.6 2.0 0.0 1.3 0.0
4.4 1.0 0.0 0.0 0.0

5.2 0.0 −1.2 0.0
1.8 0.0 0.3

1.3 0.0
2.1

the PE phase shows the influence of order parameter fluctuations as well as crystal structure
defects on the temperature dependence of acoustic properties of the crystal in the vicinity of
the PT.

Figure 5 shows the temperature dependence of the longitudinal hypersound velocity with
�q ‖ [001]. This dependence is similar to the behaviour of a longitudinal wave with �q ‖ [010].
However, for the hypersound velocity propagating along the [001] direction in the symmetry
plane, the jump at the PT is smaller than that of the hypersound wave propagating along the
[010] direction. There is a much smaller peak in the temperature dependence of the attenuation
too (see figure 6). The spontaneous polarization vector is oriented in the symmetry plane
close to the [100] direction. Since in the monoclinic Sn2P2S6 the spontaneous polarization
vector can have some component along the [001] direction the macroscopic field probably
suppresses slightly the relaxation anomaly of the hypersound velocity and attenuation in the
[001] direction.
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Figure 3. The temperature dependence of the lon-
gitudinal hypersound velocity with �q ‖ [010].
(1) Sn2P2S6, (2) Sn2P2(Se0.15S0.85)6 and
(3) Sn2P2(Se0.28S0.72)6. Solid lines: calculation
according to relation (10).

Figure 4. The temperature dependence of
the longitudinal hypersound attenuation with
�q ‖ [010]. (1) Sn2P2S6, (2) Sn2P2(Se0.15S0.85)6,
(3) Sn2P2(Se0.28S0.72)6. Solid lines: calculation
according to relation (8).

Figure 5. The temperature dependence of the longitudinal
hypersound velocity with �q ‖ [001]. (1) Sn2P2S6,
(2) Sn2P2(Se0.15S0.85)6, (3) Sn2P2(Se0.28S0.72)6. Solid
lines: calculation according to relation (13).

The spontaneous polarization macroscopic field influence is clearly seen for the [100]
direction. Figure 7 shows the temperature dependence of the longitudinal hypersound velocity
with �q ‖ [100]. A clear broadening of the spectral lines for the corresponding Brillouin
component at the PT could not be observed. Therefore, the anomalous hypersound attenuation
could not be detected within the experimental accuracy. As we can see, there is a small jump
in the temperature dependence of the hypersound velocity. From the comparison with the
ultrasonic data [17] it follows that the ultrasound velocity jump decreases with increasing
ultrasound wave frequency: from 500 to 200 m s−1 in a frequency range 10–70 MHz, to
100 m s−1 at frequency about 10 GHz (our data). This behaviour can be explained in the
following way. For the ultrasonic wave, which has a length of about 50 µm, the existence of
the domain structure in the FE phase is very important. An estimation of the domain size in
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Figure 6. The temperature dependence of the
longitudinal hypersound attenuation with �q ‖ [001].
(1) Sn2P2S6, (2) Sn2P2(Se0.28S0.72)6. The solid lines
are guides for the eyes.

Figure 7. The temperature dependence of the longitudinal
hypersound velocity with �q ‖ [100] in the Sn2P2S6 crystal.

Sn2P2S6 was made earlier [21]: it gives values of its linear dimension in the range 20–60 µm.
Hence there is a variation in the ratio of the domain size and the sound wavelength when
the sound frequency changes, which determines the velocity dispersion along the direction of
spontaneous polarization in the FE phase. For the hypersound waves whose length is three
orders smaller than that for the ultrasonic ones, the macroscopic field in a polar direction
suppresses relaxation anomalies in the temperature dependences of velocity and attenuation.

In the concentration phase diagram of the Sn2P2(SexS1−x)6 solid solution, the LP
is situated at xL ≈ 0.28, TL ≈ 286 K. To study the interaction between the soft
optic mode and acoustic phonons when approaching the LP, temperature measurements
of hypersound velocities and attenuation along different crystallographic directions for
Sn2P2(Se0.15S0.85)6 and Sn2P2(Se0.28S0.72)6 were carried out. Figures 3 and 4 show the
temperature dependence of the hypersound velocity and attenuation with propagation direction
[010] for Sn2P2(Se0.15S0.85)6 and Sn2P2(Se0.28S0.72)6. When the selenium content is increased,
the hypersound velocity in the PE phase decreases, and has a jump at the PT: �v22(x = 0) ≈
760 m s−1, �v22(x = 0.15) ≈ 840 m s−1, �v22(x = 0.28) ≈ 920 m s−1. Such an increase
of the hypersound velocity jump is expected for an approach to the LP and TCP. At the same
time, while approaching the LP, the hypersound velocity anomaly tails towards the PE phase
are rising. The maximum of the hypersound attenuation peak in the region of the PT grows as
the selenium concentration increases.

When one approaches the LP, the jump in v33(T ) at the PT decreases (see figure 5), and
the spreading of this jump increases towards the PE phase. Significant changes are found in
the temperature dependence of attenuation. As can be seen from figure 6, the attenuation peak
has a ‘tail’ towards the PE phase for the Sn2P2(Se0.28S0.72)6 composition. This phenomenon
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Figure 8. The temperature dependence of longitudinal (left) and transverse (right) sound velocities
with �q ‖ [101] in Sn2P2(Se0.28S0.72)6.

is connected to the increase of the order parameter fluctuations, as well as to the more intense
spreading of critical anomalies by crystal structure defects when one approaches the LP. These
two contributions were observed and analysed earlier [14] for Sn2P2(Sex S1−x)6 on the basis of
birefringent investigations.

For Sn2P2(Se0.28S0.72)6, the temperature dependence of the velocity for the longitudinal
and transverse hypersound propagating along the [101] direction was also investigated (see
figure 8). This dependence has a minimum in the vicinity of the PT. This minimum stems
from the linear interaction between the soft optic and acoustic phonons near the BZ centre.
For directions in the symmetry plane the linear interaction with the longitudinal as well as the
transverse acoustic phonons is allowed for the soft optic phonons.

2.3. Phenomenological analysis

Using the Landau theory of second order PT, one can describe the sound velocity and
attenuation anomalies. For the case of a one-component ( �P = (P, 0, 0)) order parameter
and strain interaction the thermodynamical potential can be written [22] in the following form:

� = �0 + 1
2αP2 + 1

4β P4 + 1
6γ P6 + ci j ui u j + q11iui P2 + r11i jui u j P2 + . . . , (1)

where α, β, γ are expansion coefficients, α = αT (T − T0), and the temperature dependence of
the other coefficients is neglected; ci j are elastic moduli; qi jk , and ri jkl are linear and quadratic
electrostriction coefficients, respectively. From the expression (1) and the minimum condition
∂�/∂ P = 0 one obtains for the polarization equilibrium value in the FE phase, under the
absence of strain,

P2
0 = β

2γ

[√
1 − 4γαT

β2
(T − T0) − 1

]
. (2)

The kinetic equation which describes the velocity of the polarization P approaching its
equilibrium value P0 has the form

∂ P

∂ t
= − 1

L

∂�

∂ P
, (3)

where L is a kinetic coefficient with a slight temperature dependence. Expanding the ∂�/∂ P
derivative in a power series in the difference P − P0 we get

∂ P

∂ t
= − 1

τ
(P − P0), (4)
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where τ = χ L is the relaxation time, and χ = (∂2�/∂ P2)−1 is the dielectric susceptibility.
Solving the given equation and taking into account (2), we obtain the following expression for
the jump in the complex elastic modulus at the PT [23]:

�c∗
i jkl = − 1

1 + iωτ
· ∂2�

∂ P∂ui j

(
∂2�

∂ P2

)
∂2�

∂ P∂ukl
, (5)

or

�c∗
i j = − 1

1 + iωτ

[
2q1iq1 j

β

√
1 − 4αγ

β2

+ r1i jβ

2γ

(√
1 − 4αγ

β2
− 1

)]
. (6)

The coefficient α and the relaxation time τ in expression (6) depend on temperature. Since
τ = χ L we can set τ = τ0/(T −T0). The real part of the complex elastic modulus is connected
with the sound velocity, and the imaginary part with the attenuation. Taking into account that
�c = ρ(v2 −v2∞), where the value v∞ is equal to the sound velocity in the PE phase, we obtain
the temperature dependence of velocity and attenuation from (6):

v2
i j = v2

i j∞ − 1

1 + ω2τ 2

[
2q1i q1 j

ρβ

√
1 − 4αγ

β2

+ r1i jβ

2γρ

(√
1 − 4αγ

β2
− 1

)]
, (7)

α = v2∞ − v2

2v3
ω2τ. (8)

It should be noted that the sound wave frequency ω is not a constant in Brillouin scattering
investigations as it is in the case of ultrasonic measurements. Therefore equation (7), in fact, is
a biquadratic equation in v.

To analyse the temperature dependence of the longitudinal sound velocity with �q ‖ [010]
(see figure 3), we express this by means of ci j coefficients. Let us solve the Christoffel equation
for the given values of �q and {ci j}. We obtain

ρv2
22 = c22; (c66 − ρv2

i )(c44 − ρv2
i ) = c2

46, (9)

where vi = v21, v23 (the first index denotes the wave propagating direction, the second one the
polarization). In other words, the pure longitudinal wave propagates in this direction, and its
velocity is expressed through only one c22 coefficient (polarization vector (010) corresponds to
the eigenvalue v22). Taking into account that �c = ρ(v2 − v2∞), we obtain the temperature
dependence of v22:

v2
22 = v2

22∞ − 1

1 + ω2τ 2

[
2q2

12

ρβ

√
1 − 4αγ

β2

+ r122β

2γρ

(√
1 − 4αγ

β2
− 1

)]
. (10)

In expression (10) the v22∞ value is equal to the equilibrium sound velocity in the PE
phase. In our case v22∞ = 3440 m s−1. We take the estimation of the thermodynamical
potential parameters we carried out earlier [6], and use them for an estimate of the linear
and quadratic electrostriction coefficients. Thus, according to [6], for Sn2P2S6 the expansion
coefficients are equal to αT = 1.6 × 106 J m C−2 K−1, β = 7.4 × 108 J m5 C−4, and
γ = 3.5 × 1010 J m9 C−6. The result of fitting the experimental data by (10) is shown in
figure 3. The best agreement of the theoretical curve with the experimental data is achieved for
the parameter values q12 = 3.6 × 109 J m C−2, r122 ≈ 0, and τ0 = 2.8 × 10−11c. It should be
noted that the obtained value for q12 agrees well with the value q12 = 4 × 109 J m C−2 in [24].

Considering the hypersound waves along the [100] and [001] crystallographic directions,
we notice that for the monoclinic crystal the longitudinal wave is quasi-longitudinal. There is,
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however, one pure transverse wave with the polarization vector along the [010] axis. Solving the
Christoffel equation for the mentioned directions of sound propagation, one obtains, similarly
to (9), the following expressions for the velocities:

�q ‖ [100] : ρv2
12 = c66; (c11 − ρv2

i )(c55 − ρv2
i ) = c2

15, vi = v11, v13;
�q ‖ [001] : ρv2

32 = c44; (c33 − ρv2
i )(c55 − ρv2

i ) = c2
35, vi = v31, v33.

(11)

By taking into account that the monoclinic angle in the Sn2P2S6 crystals is close to a right
angle, the c15 and c35 coefficients in (11) can be neglected (for rhombohedral symmetry they
are equal to zero). As can be seen from table 1, the absolute values of these coefficients are
small compared to c11, c33 and c55. Therefore, from (11) in the given approximation we obtain
ρv2

11 ≈ c11, ρv2
33 ≈ c33, and from (6),

v2
11 = v2

11∞ − 1

1 + ω2τ 2

[
2q2

11

ρβ

√
1 − 4αT γ

β2

+ r111β

2γρ

(√
1 − 4αT γ

β2
− 1

)]
. (12)

v2
33 = v2

33∞ − 1

1 + ω2τ 2

[
2q2

13

ρβ

√
1 − 4αT γ

β2

+ r133β

2γρ

(√
1 − 4αT γ

β2
− 1

)]
. (13)

The analysis of the temperature dependence of the sound velocity propagating along the
[001] direction in Sn2P2S6 (see figure 5) in the framework of the LK model shows that the
term responsible for the quadratic electrostriction plays an important role. Describing by
equation (13) the experimental dependence (figure 5), the q13 and r133 coefficient values were
obtained as 2.8 × 109 J m C−2 and 4.0 × 1010 N m2 C−2, respectively, at τ0 = 4.6 × 10−11c
(q13 = 3.3 × 109 J m C−2 from previous work [24]).

Let us analyse the anomalies in the temperature dependence of the sound velocity
along the [010] direction in Sn2P2(SexS1−x)6 (see figure 3). They are an indication for
a behaviour according to the LK model. For the analysis within this model according to
equation (10), we use for the solid solution the known [6] α, β and γ coefficients of the
thermodynamical potential (1). Then we may describe the sound velocity anomalies with
the following electrostriction coefficients: for Sn2P2(Se0.15S0.85)6: q12 = 3.5 × 109 J m C−2,
r122 = 10 × 1010 N m2 C−2; for Sn2P2(Se0.28S0.72)6: q12 = 3.4 × 109 J m C−2, r122 =
2 × 1010 N m2 C−2. Comparing these values with the analogous ones for Sn2P2S6 shows a
weak dependence on concentration within the experimental inaccuracy.

The analysis of the temperature anomalies of the hypersound velocity along [001]
(see figure 5) in accordance to (13) gives the following values for the parameters:
Sn2P2(Se0.15S0.85)6: q13 = 2.2×109 J m C−2, r133 = 1.1×1010 N m2 C−2; Sn2P2(Se0.28S0.72)6:
q13 = 2.6 × 109 J m C−2, r133 = 0.9 × 1010 N m2 C

−2
.

2.4. Orientation dependence

To get a better view of the crystal lattice instability in the PE phase of Sn2P2(SexS1−x)6,
the direction dependence of the hypersound velocity was investigated. The longitudinal and
transverse hypersound velocities were determined by Brillouin scattering methods for a number
of propagation directions and at several temperatures. Using these sound velocities, the elastic
tensor was determined. With these elastic tensor elements, the sound velocities of longitudinal
and transverse waves may be determined for any direction in the crystal. The characteristic
surfaces, which illustrate the anisotropy of the elastic properties, were then calculated. We
shall discuss the cut of these surfaces by the main crystallographic planes.
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Figure 9. Velocity indicatrices of acoustic phonons propagating in the symmetry plane (010):
(1) in the PE phase of Sn2P2S6 (340 K), and (2) for Sn2P2(Se0.28S0.72)6 in the PE phase (293 K).
(a) transverse phonons polarized in the symmetry plane (010); (b) transverse phonons polarized in
the [010] direction; (c) longitudinal phonons polarized in the (010) symmetry plane.

The elastic matrices at room temperature for Sn2P2S6 and Sn2P2(Se0.28S0.72)6,
corresponding to the FE and the PE phases of these crystals, respectively, were given above (see
tables 1 and 2). To compare the data in the PE phase the temperature behaviour of the elastic
moduli and the orientation dependence of the sound velocities were determined for Sn2P2S6.

The calculated orientation dependence of velocities of the longitudinal and two transverse
waves with propagation direction lying in the symmetry plane are shown in figure 9.
Comparing these dependences for Sn2P2S6 and Sn2P2(Se0.28S0.72)6 in the PE phase near the
PT temperature, it is possible to conclude that some softening occurs of the quasi-transverse
acoustic phonons, which are polarized and propagate in the (010) plane and are connected by
the elastic strain uxz , when approaching the LP.

Let us examine the origin of the lattice instability for the Sn2P2(SexS1−x )6 proper
ferroelectrics. The interaction of the order parameter fluctuations with the elastic degrees
of freedom plays an essential role in the mechanism of the PT to the IC phase in proper
ferroelectrics. A shift of the dispersion branches minimum of the interacting soft optic and
acoustic phonons from the BZ centre is connected with the increasing of this interaction. In the
case of Sn2P2S6-like crystals the linear interaction between the soft TO mode and the transverse
acoustic TA mode along qy , and polarized along the X axis, is involved. This interaction is
proportional to the wavevector modulus and both modes attain a similar B symmetry at qy �= 0.
Moving away from the BZ centre along qz , the soft TO mode and mixed quasi-longitudinal and
quasi-transverse acoustic vibrations polarized in the X Z plane attain the same A′ symmetry
which allows the linear interaction. These situations are characterized by the occurrence of
(∂η/∂Y ) · uxy -like or (∂η/∂ Z) · uxz -like gradient invariants of the Lifshitz type (where η is
an order parameter). Thus, the wavevector of the IC phase and its temperature range, which
are defined by a form of a dispersion branch of the interacting soft optic and acoustic phonons,
depend considerably on the elastic moduli. If the dispersion surface of the soft optical mode is
close to the isotropic one, the direction characterized by the smallest velocity of the transverse
elastic wave is the most favourable for the production of the modulation vector of the IC phase.

Note that in Sn2P2S6-like crystals the TO mode along qy interacts linearly only with the
lower TA branch, whereas the interaction with the L A branch occurs along qz too and this
branch may serve as a mediator which produces a linear coupling between the soft TO and
TA phonons. Moreover, due to a full-symmetric character of the uxz shift, there is an η2uxz

invariant. A term η2uxy is forbidden by symmetry, and thus, for transverse acoustic phonons,
propagating along the Z axis, the nonlinear interaction with the order parameter fluctuations
is allowed in the lowest order (for longitudinal phonons this holds for η2uii ). Due to the
increase of the fluctuations when the PT is approached from the PE phase, this promotes the
reduction of the velocity of TA phonons with qz . The fluctuation variation of the velocity of
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TA phonons with qy must be much less since only a biquadratic nonlinear coupling of η2u2
xy is

allowed. These facts agree qualitatively with the softening of quasi-transverse acoustic phonons
polarized in the (010) plane and propagating near the direction of the modulation wavevector
in the IC phase of Sn2P2(Sex S1−x)6.

Earlier the relationship between the optic and acoustic branches softening observed by
neutron scattering and the incommensurate transition for the Sn2P2Se6 crystal was considered
in a simple model for the dispersion curves and interaction strengths, valid in the low-q
continuum limit [9]. This model was suggested by the analysis of the spectra with the
assumption of a real coupling between the optic and acoustic phonons. It was assumed that
all of the soft fluctuation behaviour is contained in a ‘bare’ temperature dependent optic mode
(polarization Px ), which interacts with a temperature independent acoustic mode (strain uxz )
via a temperature independent and real interaction strength. In this model a small change in
the material parameters (an increase of the soft optic mode dispersion and acoustic phonons
velocity or a decrease of their interaction parameter) will change the position of the instability
from qi �= 0 to qi = 0 [9].

3. Lattice dynamics in the polarizable ion model

3.1. Model description

To simulate the lattice instability of the PE phase of Sn2P2S(Se)6 and to see what happens
if one substitutes sulfur by selenium we calculate the spectra of order parameter fluctuations
for several points near the LP in the T –x diagram of Sn2P2(SexS1−x )6. Notice that the lattice
dynamics calculations were performed previously in the framework of the rigid ion [25] and
polarizable ion (polarizability of the sulfur atoms was included only) [26] model for Sn2P2S6

only. But there has not been made any modelling of lattice instability in the PE phase of this
crystal. We use the polarizable ion model (polarizability of all atoms is considered) [27]. The
model parameters were defined by fitting the calculated phonon spectra to the data of Raman
spectroscopy [28, 29], ultrasound investigations [17] and neutron scattering [9, 20]. The phonon
spectra of Sn2P2S(Se)6 were already analysed in [30].

An axial symmetry force field model [27] has been used to describe the short-range
interactions. For the Sn2P2S(Se)6 compounds the following short-range interactions have
been taken into account: the internal anion interaction (between the first neighbours
‘phosphorus–phosphorus’, ‘phosphorus–chalcogen’, ‘chalcogen–chalcogen’ and between the
second neighbours ‘phosphorus–chalcogen’) and the external interaction (between the first
neighbours ‘tin–chalcogen’, ‘tin–phosphorus’, ‘chalcogen–chalcogen’). The long-range part
has been defined by effective charges and polarizabilities. The model contains 12 independent
parameters: 7 radial force constants Ai for the short-range interaction, 5 for the long-range
interaction (two effective charges and three polarizabilities). The tangential force constants
have been determined from the static equilibrium conditions. The final set of parameters is
given in table 3.

3.2. Low-frequency part of the phonon spectra in the PE phase

We shall now look in more detail at the lattice dynamics of the Sn2P2S6 family in the PE phase.
Let us consider the low-energy spectral part of the PE phase of Sn2P2S6, Sn2P2Se6 and their
solid solutions. We concentrate on the lattice instability. Below the ferroelectric PT in Sn2P2S6

(P21/c → Pc) the transverse optical mode of Bu symmetry in the BZ centre condenses. The
lowest calculated Bu symmetry optical mode is transverse and polarized in the symmetry plane
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Figure 10. Different types of the modelled lattice instability (dotted lines versus continuous and
dashed lines) in the PE phase of Sn2P2S6 (left) and Sn2P2Se6 (right) (the division in respect to
symmetry: continuous lines—symmetry A′ modes for qX and qZ , and A for qY , dashed lines—
symmetry A′′ modes for qX and qZ , and B for qY ; the arrows point to the soft optic mode location).

Table 3. Parameters of the polarizable ion model for Sn2P2S6 and Sn2P2Se6 in the FE and PE
phases (short-range parameters are dimensionless quantities, effective charges in elementary charge

units, polarizabilities in Å
3

units).

Force constant Sn2P2S6 FE Sn2P2S6 PE Sn2P2Se6 PE

A0
P−P 215 216 177

A0
P−X (near. neigb.) 283 248 227

A0
P−X (next near. neigb.) −6 1 4

A0
Sn−X 27 15 27

A0
Sn−P −2 −3 −9

A0
X−X (inter anion) 11 14 3

A0
X−X (intra anion) 21 19 25

ZSn 1.2 1.45 0.91
ZX 0.42 0.33 0.49
ZP 0.54 0.59 0.47
αSn 1.5 3.3 4.5
αX 2.8 1.1 1.7
αP 0.6 1.3 0.05

close to the [100] direction. The dispersion curve of this mode has its minimum in the BZ
centre (see figure 10). Though the interaction of this optical vibration with the acoustic ones is
possible, no change in the dispersion curves of the latter has been observed.

The special feature of the calculated spectrum for Sn2P2Se6 is a clearly defined minimum
of the low-energy optical branch (with Bu symmetry in the BZ centre) below qZ ≈ 0.15
(see figure 10). The linear interaction of the mode with the transverse acoustic vibrations
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Figure 11. The energy surface, calculated in the symmetry plane, of the lowest acoustic vibration
in the PE phase of Sn2P2S6 (left) and Sn2P2Se6 (right).

(This figure is in colour only in the electronic version)

having the same symmetry (A′), and polarized in the symmetry plane, preconditions a clear
minimum in the acoustic branch below qZ ≈ 0.25. This situation agrees qualitatively with
the experimentally observed pictures: in Sn2P2Se6 a sequence of PTs of the second and the
first order is seen on cooling. The transition from the high-temperature nonpolar phase to the
polar one goes through a modulated incommensurate phase. The modulation period of this
phase increases on cooling and is approximately 12–14 unit cells, which corresponds to the
condensation of phonons at approximately q ≈ 0.1 and the modulation vector is directed close
to qZ direction in the symmetry plane [8, 9].

So we find in the calculations of the lattice dynamics in the polarizable ion model an
essential difference between Sn2P2Se6 and Sn2P2S6 in the dispersion curves of the transverse
optical modes, connected with the PT and acoustic branches interacting with them.

3.3. Orientation dependence of the acoustic phonon branches

To check whether there are other minima in the phonon dispersion curves, in other directions,
we have calculated the orientation dependence of the phonon spectra. In figure 11 the dispersion
surface of the low-energy acoustic vibrations in the (010) reciprocal plane is given. As can
be seen, there is a clearly marked difference between Sn2P2Se6 and Sn2P2S6: for the former
there is a minimum in the direction close to qZ (in agreement with the experiment in [9], the
difference is about 9◦), for the latter there is no minimum.

The calculations given for the acoustic surfaces make a comparison possible between the
orientation dependence of the sound velocities obtained theoretically (see figure 12) and those
obtained experimentally with Brillouin scattering (see figure 9). As can be seen, the polarizable
ion model reflects qualitatively the anisotropy of the elastic properties of Sn2P2S6. As long as
Brillouin spectroscopy data are not available for Sn2P2Se6, the same is not possible in that
case, but we can compare the angular dependence of the sound velocities, experimentally
investigated for Sn2P2(Se0.28S0.72)6 (see figure 9). As can be seen, the experimental orientation
dependence of velocities of quasi-transverse acoustic phonons propagating and polarized in the
monoclinic symmetry plane for both compositions (x = 0, x = 0.28) agree qualitatively with
the calculated ones in the polarizable ion model from the dispersion surface of these phonons
for q → 0. However, in the experiment (see the temperature dependence of the transverse
acoustic phonon velocity in figure 8 and the orientation dependence of this velocity in the PE
phase near the PT temperature (see figure 9) for crystals with x = 0.28), no soft acoustic mode
(i.e. the decrease of the transverse sound velocity for qi → 0 for x → xLP) has been observed,
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Figure 12. The indicatrix of the sound velocities in the PE phase calculated in the polarizable ion
model for Sn2P2S6 (left) and for Sn2P2Se6 (right).

as would be expected for the LP in proper ferroelectrics. To clarify the possible reason for
this absence of the acoustic mode softening in the PE phase of proper ferroelectrics under
cooling to the LP (similar to the soft acoustic mode in proper ferroelastics), we modelled the
PE phase lattice instability of the Sn2P2S6 and Sn2P2Se6 crystals with the following analysis of
the instability, applied to the Sn2P2(Sex S1−x)6 solid solutions.

3.4. The lattice dynamical instability and the model parameters

We study here the dynamic instability in the polarizable ion model, varying its parameters.
Because the displacement of the cation sublattice with respect to the anion one plays the main
role in the PT, we vary the model parameters responsible for the interaction between the two
sublattices. These are the radial force constant ASn−S/Se, the effective charges and the ion
polarizabilities.

In the case of Sn2P2S6 the change of the model parameters leads to the condensation of
optical phonons in the BZ centre (figure 10). Notice that the optical mode softening takes place
in the qY direction. This can be explained by the fact that the phonons with symmetry Bu (A′)
propagating in the plane X O Z are skew (quasi-transverse or quasi-longitudinal) ones. This
gives them an additional rigidity at the expense of the macroscopic field in comparison with the
transverse Bu (B) phonons propagating in the qY direction.

The analysis of the data obtained confirms that the most important contribution to the
lattice instability is the charge transfer between the tin and chalcogen atoms. Then the change
of the ion charges causes in its turn a change of their polarizabilities; there is a unbalance of
forces and the system becomes unstable for a well defined mode.

In Sn2P2Se6 the change of the model parameters leads to the condensation of the mixed
optic and acoustic phonons below qZ ≈ 0.25. While decreasing the ASn−Se constant, increasing
the ion polarizability or changing the charge of the tin and selenium atoms the condensation
of the interacting optical and acoustic phonons with small changes of other phonon branches
(figure 10, dotted lines) happens.

To understand the reason for the difference between the PTs for Sn2P2S6 and Sn2P2Se6

we studied the influence of different interactions on the dispersion curves of the low-energy
optic phonons. While taking into account only short range and Coulomb interaction in the
rigid ion model, the frequencies of modes are increasing but the dispersion curves change
to monotonically increasing curves with a minimum frequency value in the BZ centre (see
figure 13). The instability modelling in this case shows that the phonons condense below
qY → 0 for both compounds. It is likely that at the expense of the macroscopic field the
vibrations propagating in the qZ direction have an additional hardness. The evident LO–TO
splitting increases with the condensation of phonons, especially in Sn2P2S6, which has higher
values of the effective charges.
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Figure 13. The phonon spectra of Sn2P2S6 (left) and Sn2P2Se6 (right) when only short range and
Coulomb interactions are taken into account (in the rigid ion model). The solid lines correspond
to the model parameters with the stable phonon spectra, the dotted ones to the modelled dynamic
instability; the arrows point to the initial (stable) and final (unstable) location of the optic mode
under destabilization.

Figure 14. Different types of lattice instability modelled in Sn2P2(Sex S1−x )6 solid solution:
x = 0.25—1, x = 0.33—2, x = 0.4—3; the arrows point to the points where phonon branches
condense.

Including the polarizability of ions changes the situation drastically (figure 10). The
frequency of the lowest optic Bu mode (under q = 0) decreases, but the dispersion curve now
has a minimum near qZ ≈ 0.25 for the selenium, and at q = 0 for the sulfur compound. This
modelling of the instability reproduces the experimental picture. Thus the ion polarizability is
an important factor for the lattice dynamics and the instability in Sn2P2S(Se)6. The change in
the polarizability of ions and their charge state essentially influence the dispersion type of the
soft optic mode of the crystals.

3.5. Solid solutions, the vicinity of the LP

To analyse the changes in the dispersion of the soft mode when substituting sulfur for selenium,
the lattice dynamics of Sn2P2(SexS1−x)6 was calculated within the framework of the so-
called average crystal model. This model takes a linear approximation for the concentration
dependence of all parameters which define the phonon spectrum. Of course, this model is very
simplified. However, the similarity in the structure of the end member compounds, and the
statistic character of chalcogen atom substitution in mixed crystals [31], let us expect a smooth
behaviour of the concentration dependence of the phonon spectrum in the lower energy part.

We find (see figure 14) that for crystals with selenium concentration 0 < x < 0.33 there
is a condensation of optic phonons in the BZ centre. This is the case for Sn2P2S6. For the
solutions with 0.33 < x < 1 there is condensation of mixed optic and acoustic phonons at
qZ ≈ 0.25, similar to the case for Sn2P2Se6. For the composition near x ≈ 0.33 there is a
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simultaneous condensation of phonons in the BZ centre and in another point of the BZ (see
figure 14). This means that in our model there is a ‘two-mode’ concentration transformation
for the spectrum of the order parameter fluctuations. It should be noted that the independence
from the concentration of the wavevector of modulation (qZ ≈ 0.25) does not agree with the
x-ray diffraction data given in [8], where they have obtained the behaviour q2 ∼ (x − xLP)

expected for the LP case. However, it might be that it was impossible to separate experimentally
the contributions from Bragg satellites approaching to the LP. Moreover, there are only data
available for three values of the selenium concentration x = 0.6, 0.8, 1.0, and this does
not allow one to determine accurately the concentration behaviour of the modulation wave
vector in the IC phase near the LP. Obviously, it is desirable to carry out further investigations
to define the concentration dependence of the wavevector of modulation of the IC phase in
Sn2P2(Sex S1−x)6.

The relaxation component of the critical dynamics in Sn2P2S(Se)6 [32] can, probably,
also somewhat change the wavevector value at which the lattice instability of the PE phase
occurs. However, the specific ‘two-mode’ concentration transformation of dispersion, as found
in the polarizable ion model, agrees with the absence of the soft transverse acoustic mode in
Sn2P2(Se0.28S0.72)6.

4. Conclusions

Brillouin spectroscopy has been carried out for the investigation of the temperature dependence
of the acoustic properties in Sn2P2(SexS1−x)6 at the PT, in the vicinity of the LP in the phase
diagram. The sound velocity and attenuation anomalies at the ferroelectric second order PT
are well described by the Landau–Khalatnikov theory. For increasing selenium concentration
and approaching the LP (x ≈ 0.28), the temperature interval where the hypersound velocity
and attenuation deviate from its regular tendency in the PE phase grows, which is obviously
caused by the enhancement of the order parameter fluctuations and the influence of structural
defects on the critical anomalies. For the transverse acoustic phonons propagating in the (010)
monoclinic plane near the [001] modulation direction in the IC phase and polarized in this
plane close to the [100] spontaneous polarization direction, we have found a partial softening
of the hypersound velocity under cooling to the PT temperature in the vicinity of the LP. This
is a manifestation of a linear interaction of the soft optic mode dispersion branch with the
transverse acoustic phonons branch near the BZ centre. This interaction is also manifest when
we compare the group velocity surfaces in the PE phase of Sn2P2S6 and Sn2P2(Se0.28S0.72)6

which were calculated on the basis of the Brillouin spectra for phonons propagating in
different crystallographic directions. Lattice dynamics calculations of the compounds within
the polarizable ion model were used for the study of the lattice instability of the proper uniaxial
ferroelectrics in the vicinity of the LP. For x < xLP at the PT from the PE phase to the FE
phase the condensation of the soft optic mode having Bu symmetry has been modelled at
qy → 0. For x > xLP at the PT from the PE phase to the IC phase due to the strong enough
(∂ Px/∂z) · uxz interaction which corresponds to the Lifshitz invariant, the mixed optic and
quasi-transverse acoustic phonons condense at qz > 0. The fact that these mixed phonons have
their propagation and polarization in the monoclinic symmetry plane explains the longitudinal
component of the polarization for the soft optic mode, and preconditions consequently the
additional hardness for the polarization fluctuations. This leads to an LO–TO splitting of the
soft optic frequencies for phonons with qy → 0 and qz → 0. The larger effective charges
in sulfur compounds is the reason for the increase of the LO–TO splitting when selenium is
substituted for sulfur, and leads to the condensation of the soft optic mode at qy → 0 in the
presence of a small (∂ Px/∂y) · uxy interaction. In the vicinity of the LP the simultaneous
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condensation of phonons has been modelled for qy → 0 and for qz > 0. The mentioned ‘two-
mode’ concentration transformation of the order parameter fluctuation spectrum is, obviously,
a reason for the absence of the soft acoustic mode in Brillouin spectra, and a strong decrease of
the velocity of transverse acoustic phonons in the PE phase, in the neighbourhood of the LP in
Sn2P2(Se0.28S0.72)6.
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